
Heuristics for New Language

Peter Toshev
peter.toshev@sabinski.org

Abstract

How do we create new language? Drawing on the observation that some languages—such as Pirahã—
are almost entirely without a number system, this work explores what other features of human language
could be fundamental yet remain unrealized. We propose the super language framework, a modular
approach for iterating new forms (e.g. phonetic or morphological containers) and interpretations (e.g.
semantic or pragmatic functions) on top of any base language. The resulting augmented variants are
organized into a typology serving as a roadmap for experimentation. As a simple proof of concept, we
present StegaPhone, a super language prototype that hides binary data within deliberate mispronun-
ciations (e.g. “swim” vs. “svim”), thereby extending a phonetic layer into a parallel communication
channel. To operationalize the framework, we outline a transformation engine—a rewrite-based system
capable of covering the space of possible language modifications in a standardized, invertible manner.
We argue that this “tip of the spear” architecture enables rapid language development and productive
feedback loops across the domains in which it may be applied. Finally, we situate the significance of such
a heuristic approach by considering the central role of language in communication, cognition, machine
interfaces, and beyond, underscoring how new features have, and can continue, to impart transformative
capabilities onto their operators.

Introduction

What is new language? And how do you make it? In this paper, we propose a framework for this line of
inquiry.
As a point of entry for these questions, it will be useful to foreground their context in a brief review of
the lacking number system in the Pirahã language. The Pirahã people, an indigenous group in the
Amazon rainforest, are reported to rely on very few and only approximate number words [1], [2].
Roughly simplified these are: hói (“one” or “few”), hóı (“two” or “some”), baágiso (“three or more” or
“many”). A contemporary observer may find it bewildering that Pirahã speakers can manage without
more precise language for numbers. So much so, they may even feel compelled to persuade the Pirahã to
introduce better parametrized notions of quantity by adding linguistic objects to their language.
However, in an alternate reaction, the observer could instead mirror the discovery back onto themselves
and ask, what important features may my language be missing? Are there other, fundamental features
whose absence will be similarly shocking to my descendants? Inspired by these questions (Figure 1), the
work shared here is an effort in the heuristics of new language.

Super Language Framework

The super language framework is introduced in four progressively prescriptive and formal sections (each
composed of a Description-Example pair) covering the model and the engine. They are followed by a
short section on the typology and a review of the framework in select contexts.

1

Figure 1: Illustration of a thought experiment. To parse the question “how
do you make new language?”, an observer analogizes (the lack of) numbers in
Pirahã to possible new features in their own language.

Such a sequential unfolding is important to describe and make intuitive operation of the framework at its
different levels.

Description 1: Model gist

Super language is a model to promote the research, development, and adoption of new language. An
instance of a super language, a variant, is a base language transformed by one or modifications.
Typically, a super language is designed to augment its base with new or improved features.
Casually, in expression (1) we can consider a transformation Z that maps a base language B with
modifications M to its super language variant V .

Z : B ×M → V (1)

Each Z, B, M , are V drawn from the universe of possible transformations, bases, modifications, and
variants, respectively, such that Z : B ×M → V.

Example 1: StegaPhone prototype

StegaPhone (V) is a super language transformation (Z) from an oral English base (B) with
steganographic phonetics modification (M). The choice of English is without loss of generality. In an
example StegaPhone variant, a speaker can embed a hidden message in the mispronunciation of words. A
speaker encodes a 0 or a 1 in any word they pronounce or mispronounce, respectively. The resulting
sequence of binary values can be transformed to carry any message, for example another sequence of
words.
In text, mispronunciations in StegaPhone will use phonetic misspellings. For example: “hello world” �
“00” and “hello vorld” � “01” in this scheme.
In the interactive examples subsection are two demonstrations of StegaPhone to show the opportunity in
this simple variant and the broader universe of super language transformations it represents.
This phonetics-based approach is a contribution in the research on linguistic steganography. It adds to
the many other existing forms of text steganography explored, including steganography through
translation, transliteration, VOIP or other acoustic carriers, and generative language models, as well
across both text edit- and generation-based methods [3].
Stated informally, one of the augmentations in StegaPhone is the increased dimensionality, over its oral
English base, in its function as a communication channel (i.e. new bandwidth in phonetic component).

2

Interactive examples

There are two interactive examples are at:
https://intro2024.superlang.org
Appendix A.1 provides elaboration on each.

StegaPhone playground The first is a playground interface where users can encode or decode their
own StegaPhone text and modify StegaPhone parameters, such as payload alphabet or chunk size.

StegaPhonetic news The second is a demonstration of a toyish use case for this steganography
technique, in which a journalist embeds fictitious stock tips by selectively mispronouncing words in a
financial news broadcast.

Description 2: Model starter kit

Super language definitions

Super languages can be identified and further tiered according to a set of criteria.

Criteria A language is a super language if and only if it has all the following properties:

1. It has a base language.

2. It has one or more modifications over the base.

3. It has a transformation, defining the operation of modifications over the base.

Criteria (1), (2), and (3) together describe the trivial, tier-0 super languages.
A super language is a non-trivial, tier-1 super language if and only if it has the following additional
property:

4. It contributes a new form or interpretation to the base.

It is a tier-2 super language if and only if it has the following additional property:

5. It contributes at least one augmentation to the base.

Base A base can be any language, or any broader communication or semiotic sign system. It can itself
be a super language.

Modification A modification is a change to the base described in terms of either a form, interpretation,
or both. It is a more general abstraction of a construction from construction grammar theory [4].

Form The form describes the symbolic containers of super language transformations. They will vary
(Appendix B.1: Forms Tables) and include linguistic (e.g. phonetic, morphological) and extralinguistic
structures (e.g. paralinguistic, kinesic). They also include containerized structures from interpretations
(e.g. ontological objects).
Forms θ are drawn from the universe of possible forms Θ (θ ∈ Θ).

3

https://intro2024.superlang.org

Interpretation The interpretation describes the functional roles of super language transformation.
They will vary (Appendix B.2: Interpretations Tables) and range from roles described by grammar
categories (e.g. tense-aspect-modality) to broader semantic and pragmatic sense-making functions. The
functional roles describe the information or meaning that is contained in the forms of transformations.
Interpretations ψ are drawn from the universe of possible forms Ψ (ψ ∈ Ψ).

Variant A super language variant is an instance of a super language for a particular choice of base,
modifications, and transformation implementation.

Transformation A super language transformation, in the general case, is the specified operation of
modifications over a base to create a variant. In the particular case, it is an instance of a super language
transformation (e.g. a finite transformation from base string to variant string).

Augmentation Informally, an augmentation can be described as a new or improved feature of the
super language or alternatively, as the purpose subserved by changes in form and interpretation
introduced by the super language. They will vary (Appendix B.3: Augmentations Tables). For example,
a “speed” augmentation could describe a modification which contributes an increase in the rate of
information transmission per unit time.
Augmentations ϕ are drawn from the universe of possible forms Φ (ϕ ∈ Φ).

Super language transformation

The preceding elaboration on super language structure makes it possible to expand on expression (1) and
provide a more formal outline.
First, in terms of the transformation form and interpretation axes.
Second, in terms of super language representations along those axes.
Third, in terms of an example formalization.

Axes The critical axes along which to consider the universe of possible transformations Z are the forms
and interpretations described in the super language structure.

Zθ : Bθ ×M θ → V θ (2)

Zψ : Bψ ×Mψ → V ψ (3)

Z(θ,ψ) : B(θ,ψ) ×M (θ,ψ) → V (θ,ψ) (4)

The combination of the two in expression (4) is equivalent to (1), i.e. Z is Z(θ,ψ).
Example: separating a modification adding “tense” into its different possibles forms, such as a
morphological structure, and its different possibles interpretations, such as new temporal encoding to
represent future events.

Representations Language L, whether a base B or variant V , may be represented in a variety of
ways. Therefore we describe the representation-level transformation in terms of the choice of
representation domains.

Ẑ : B̂ × M̂ → V̂ (5)

The components in Ẑ are equivalently each drawn from the universe of possible representations, such
that Ẑ : B̂ × M̂ → V̂.
Example: for language L with a generative grammar G, super language transformation Z can have
representation transformation ẐG.

4

Formalization example An example formalization considers the form of super language
transformation (Zθ) in terms of a generative grammar representation (ẐθG) that can be described by:

ẐθG : GB × (∆N,∆Σ,∆P, δS) → GV (6)

In this domain, a generative grammar G = (N,Σ, P, S).
Appendix C.3a provides an elaboration on the transformation described in equation (6).

Super language classification

Evaluations for criteria (4) and (5) will vary, even for the same super language variant.
Determining whether a super language introduces a new form, interpretation or augmentation requires a
system of reference, which must be included as a part of the determination. Such a determination is
possible as a classification executed by a classifier. A sketch to this determination approach is in Super
Language Typology.
Classifications according to form, interpretation, and augmentation are key because they can provide
quick answers to the questions “what has changed”, “how is the change used”, and “what purpose does
the change serve” when describing a super language. The Transformation Variation tables (Appendix B)
provide categories, with some interspersed examples, along these three critical axes of variation. They are
start to the parametrization of the space of possible super language transformations that can serve as a
potent roadmap for variant experimentation.
Beyond these categories, there are other valuable classification varieties, such as the categorization of
downstream super language uses into applications. Informally, applications can be described as the
systems in which variants can manifest their augmentations over a base.

Important properties

Designed vs. descriptive Super language can be designed (e.g. StegaPhone), when they are a
prescriptive creation on top of a base. They can be descriptive, when an already existing language is cast
as the super language transformation of another. For example, a verbal language can be cast as a
descriptive super language of oral language which was modified to include writing.

One for all modifications A modification can be one or more modifications. By default, a
combination is assumed to be nested, where each modification is applied independently and serially.

Tip of the spear transformation Critically, a base does not need to be described beyond the narrow
scope relevant to the super language transformation. The transformations applying modifications over a
base do not need to produce the underlying structures of the base (e.g. its generative grammar). They
must only define how a subset of base structures change. In concert with the other model properties, the
focus on the modifications over a base enables a tip of the spear approach to language design to
unencumber both experimentation and adoption of new features. Traditional language creation and
language learning often suffer from “cold start” problems, which the modular incrementality in the super
language approach is crafted to address.

Example 2: StegaPhone in the model

The example StegaPhone variant can be more precisely defined (Table 1) as a super language in the
framework model. We provide an example formalization in terms of the variant’s form in the generative
grammar representation domain.

5

StegaPhone transformation components

Table 1: Example super language model components of a StegaPhone variant.

Component Value

Super language StegaPhone
Base EN-US (oral)
Modification Steganographic Phonetics
Mod Form Pronunciations of words
Mod Interpretation {Correct pronunciations = 0, Mispronunciations = 1}

Variant StegaPhone-201
Transformation StegaPhone over EN-US (oral) encodes word-wise a <Payload string> where

each symbol is encoded as the binary value of its index in the <Payload alpha-
bet>, set to {�, ^, AO, BO}.

Example
Transformation

Base string: “hello world”
Variant string: “hello vorld”
Payload string: “^” (“01” binary index)

StegaPhone formalization example

Consider the StegaPhone transformation Zsp, defining the map from its oral English base Ben and
steganographic phonetics modification Msp to the variant Vsp:

Zsp : Ben ×Msp → Vsp (7)

For a generative grammar Gen of the oral English base Ben, the associated StegaPhone transformation
(Ẑθsp) in this domain can be described by:

Ẑθsp : Gen × (∆N,∆Σ,∆P, δS) → Gsp (8)

While Gen is unwieldy, the resulting Gsp = (Nsp,Σsp, Psp, Ssp) can be made very simple using the super
language framework.

StegaPhone generative grammar The components of Gsp will be:

� Non-terminals Nsp = {Sentence,WordSequence,Word, S} where WordSequence is Sentence with
one or more Word removed.

� Terminals Σsp = {w,w′ | w,w′ ∈ Σ,Σ′} where the sets Σ, Σ′ are those of the correctly, incorrectly
pronounced English words.

� Production Rules Psp =
1. S → Sentence
2. Sentence → WordSequence
3. WordSequence → Word
4. WordSequence → Word WordSequence
5. Word → w, ∀w ∈ Σ (correctly pronounced words)
6. Word → w′, ∀w′ ∈ Σ′ (mispronounced words)

6

� Start symbol S = Sentence

In the interpretation I of the language Vsp, the output of interpretation function I will vary across Σ and
Σ′, where I(w) → 0 and I(w′) → 1. The values 0 and 1 are binary elements in {1,0} that constitute the
payload.
Appendix C.3b provides derivation and additional details.

StegaPhone classification

On a first pass, it can be more suitable to consider variant classifications informally, guided by categories
outlined in Appendix B, before doing so with strict and explicit methods.

Form Pronunciations are a phonetic element of speech. Phonetics are an example of the broader set of
forms in the linguistic category of containers (Appendix B.1).

Interpretation The word-wise encoding of binary bits in a payload creates an additional stream of
communication that can be identified as a “parallelization”. This parallelization is an example in the
broader “Information Encoding & Channels” category of functional roles (Table 8 in Appendix B.2).

Augmentation Intuitively, use of StegaPhone to modify the sending and receiving of message should
increase the security or the bandwidth of the communication channel in which they are transmitted
through. In the framework, we can consider the potential of the “parallelization” identified in
StegaPhone to see if it may qualify as an augmentation (Appendix B.3).
For example, we can consider the “surprisal” augmentation target. A surprisal augmentation is an
increase in information per unit word (e.g. a higher load of meaning per word following a lexicon
expansion). Such an increase is a consequence of the StegaPhone transformation and therefore makes
“surprisal” an augmentation of the variant.

Application The typical application for steganography, including in this phonetic form, is information
security. A less obvious application for the StegaPhone super language would be to investigate its
potential for intelligence development. For example, carrying out a study of StegaPhone for its effects on
activities subserved by the prefrontal cortex (PFC), such as working memory or attention control. Such a
study could investigate if speakers of StegaPhone see improved performance in listening span tasks,
which has been associated with improved learning and comprehension [5]. It could also explore new
variations on listen span tasks, requiring individuals to encode and decode payloads in a series of
utterances. It is through such trials that StegaPhone, or other super language variants, can be identified
as good candidates for broader adoption.

Exploration & exploitation in the framework

Iteration with new ideas on revised objectives is natural in the super language framework. For example,
the implementation of StegaPhone described has limitations in the context of human adoption.
The cognitive load from payload encoding and decoding, where a StegaPhone speaker must track words
of an utterance as a binary data stream, is very high. It can be greatly reduced by limiting the size of the
payload alphabet or by introducing significant chunking, but such changes may be unlikely in making
unassisted StegaPhone speech practical.
This limitation could be addressed by considering more operable uses to the StegaPhone modification, or
more precisely, by keeping its phonetic form (mispronunciations) but changing its interpretation

7

(word-wise encoding of bits). For instance, rather than having the payload be a separate a message with
symbols encoded as their indices, the interpretation could be a small set of actions that change semantic
components of the cover. For a trivial example, a mispronunciation could be the logical negation of
clause: “I will go” � “I will go” so that “I vill go” � “I will not go”, which is a more human-operable
variation and likely a better start towards an application in intelligence development.
The rapid iterations to calibrated but flexible end goals in transformation design is key to developing
valuable super language prototypes.

Super Language Engine

Description 3: Engine primer

Transformation engine motivation

The super language model, comprised of criteria, components, and classifications, provides valuable
scaffolding and a roadmap for new language. However, it does not lay out a system for the production
and operation of super language. Such a system should establish a set of methods to parse, generate, and
operate super language across the variety of forms and interpretations (including their derivatives and
abstractions) that their transformations could take on. The system must cover the universe of possible
transformations but it must also standardize the making of super language so that it is agnostic to the
specification details of any particular variant. The methods should be simple for more reproducible and
scalable development of super languages. In the transformation engine described below, we present such
a system to operationalize the super language framework.

Transformation engine brief

Resetting the informal notation, a transformation from language (L) to super language (Z) can be
executed by the transformation engine outlined in Equations (9), (10) and Figure 2.

Z : B × U → V ×W (9)

Z−1 : V ×W → B × U (10)

The transformation engine proceduralizes super language design first by standardizing the definition of a
variant in a transformation specification that defines the transformation mapping. This specification is
the recipe necessary to implement and execute transformations from base to variant, and vice versa. The
transformation engine maps base strings to variant strings per the modifications defined in the
transformation specification. Furthermore, it maps (Z) combinations of base strings (b ∈ B) and
modification commands (u ∈ U) to variant strings (v ∈ V) and modification artifacts (w ∈W). It acts on
symbolic expressions of both the structures and the operations in super language.
In general, the bases and variants are the structures of super language transformations and the
commands and artifacts are operations over those structures. Accordingly, bases and variants will
primarily correspond to the forms of the transformation whereas the commands and artifacts will
primarily correspond to the interpretations. Of course, all components are symbolically expressed, so this
distinction highlights the respective tasks of the four components in the engine. The significant variation
in transformations from bases/commands to variants/artifacts will often be underpinned by the
motivating augmentations or other relevant super language classifications.

8

Figure 2: Transformation engine components. The forward transformation is
left-to-right and the inverse is right-to-left.

Important properties

Symbols of structures & operations There are a few important choices in the transformation
engine to make it fit for the creation and use of super language. Key to standardizing the design of super
languages is the fundamental unit in which they manifest: the symbol. Symbols, and their sequences in
strings, can represent both the structures of super language and operations over those structures. This is
critical because it will not be sufficient for a system to parse and generate the forms of super language
strings. It must also direct and enable control of the interpretations of super language strings.

Packets of forms & interpretations Key to the control of super language transformations, whether
in terms of their structures or operations, is the packetization of forms and interpretations. The
transformation engine enables fine-grained control of super language in its discretized base-commands,
variant-artifact pairs which makes for flexible and extensible super language design. This modular
architecture of the transformations enables rapid evolution in their specifications, varying the expression
and control of their forms and interpretations (including their abstractions, derivatives, other variations
in their representations).

Example 3: StegaPhone engine sketch

When considering how the StegaPhone variant may be implemented as an engine transformation, there
are a variety of possibilities for the commands and artifact components of the transformation. For the
same base string b and variant string v, we can consider a variety of examples in commands U and
artifacts W .

Fixed base & variant Example b, v ∈ B, V .
b = “We will swim today.”
v = “We vill svim today.”

Example commands Example modification commands u ∈ U .
u1 = {Payload string = “0110”}
u2 = {Payload alphabet = {�,^, AO, BO}; Payload string = “^AO”}

Here the payload string of u2, which also has binary index sequence “0110”, creates the same variant as
u1 but its meaning is different because of the change in alphabet. These couple varieties of U show that
modification commands can enable different interpretations to the same form output.

9

Example artifacts Example modification artifacts w in W .
w1 = <Payload string>
w2 = <Payload alphabet>
w3 = none

Here the artifact output chosen by the sender will create different requirements for the receiver of the
super language transformation. In w1, the payload is transmitted directly, whereas in w2, the receiver
must decode the payload themselves using the alphabet provided. In w3, significant burden is placed on
the receiver. Without additional context, they must intuit the sender’s expectation for the
steganographic package they have received.

This simple sketch emphasizes further the modularity and flexibility of the transformation engine. It can
be used as a reference template to understand and consider variations in bases/variants,
commands/artifacts, and the forms/interpretations that can describe them.

Description 4: Engine formal outlines

Transformation engine definition

The transformations in Equations (11) and (12) to and from a super language variant (V) and its
associated modification artifact (W) are those prescribed by the application of its modification (M),
including its tokenization (τ), rewrite rules (R), and modification/inverse modification function (µ/µ−1),
over its base (B) and modification commands (U). For clarity, the explanations here describe a
transformation with modifications subsumed in one modification (M).

Z (B,M(τ,R, µ) , U) → V ×W (Wint,Wkey) (11)

Z−1(V,M−1(τ,R, µ−1),W (Wint,Wkey)) → B × U (12)

A variant is defined by the set of possible super language transformations (Z) over its base. Components
of this transformation are described further in Appendix C.1: Transformation Specification Components.

Engine algorithm gist We provide a gist of the transformation engine algorithm and a more thorough
step-by-step overview is in Appendix C.2: Transformation Engine Algorithm.
For a choice of variant with specification (Z), the engine tokenizes (τ) the base (b ∈ B) input, finding
targets for the rewrite rule (R) substitutions. It sequentially iterates through the tokens and rewrite
rules, and on each match calls the modification function (µ) which carries the modification commands
input (u ∈ U). It either applies or does not apply the substitution and updates the modification artifact
(w ∈W). On termination, it outputs the variant (v ∈ V) and modification artifact, comprised of the
interpretation (wint) and inverse key (wkey).
The system preserves the necessary information (at worst the complete sequence of applied rewrite rules)
to perform the inverse transformation, recovering the source base string and modification commands for a
given variant string and modification artifact.

Engine ingredients and recipe Table 2 outlines the “recipe” for the transformation engine’s making
of super language given the provided “ingredients” in the components of the variant.

Important properties

String rewriting recipes Key to the generation and control of super language symbols and their
sequences is the ordered set of rewrite rules. Such an approach standardizes super languages into recipes

10

Table 2: Engine transformation specification components.

Component Variables Description

Base string b ∈ B Valid strings in the base (B).
Variant string v ∈ V Valid strings in the variant (V).
Tokenization τ Parsing of string input into tokens and non-token substrings.
Rewrite Rules r ∈ R Ordered set of pattern-replacement pairs (α, β) for token substitutions

(α→ β) over a string.
Mod Function µ Implements modification M(τ,R, µ) of transformation (Z).

Inputs: base (b), commands (u)
Outputs: variant (v), artifact (w)

Mod Commands u ∈ U User inputs to modification function (µ) directing transformation of base
to a target variant and/or target mod artifact.

Mod Artifact w ∈W Output of the terminating mod function call (µN), comprised of inter-
pretation and inverse key subcomponents.

Interpretation wint ∈Wint Artifact subcomponent for functional role served by transformation.
Inverse Key wkey ∈Wkey Artifact subcomponent with key material for inverse mod function (µ−1).

Inverse Mod
Function

µ−1 Implements inverse modification M−1(τ,R, µ−1) of inverse (Z−1).
Inputs: variant (v), artifact (w)
Outputs: base (b), commands (u)

for the universe of possible transformation. It is also a natural paring with the super language tip of the
spear property because when considering transformations, the intuition will often be “how should string
x becoming string y?”

Completeness As a rewrite system, any transformation can generate any recursively enumerable
language (similarly can create language generated unrestricted grammar). Such a transformation is
equivalent to a Turing machine [6]. Of course, the resulting variant is not required to be Turing complete.

Recursive rewriting Often it is convenient to recurse transformations and their inverses. In recursion,
the tokenizing step simply parses the base string into substrings, each which can become the initial base
string of a recursed transformation, which may itself be further nested. This can be useful when
modification substitutions (i.e. patterns � replacements) are functions on the token targets (e.g. regular
expression operations).

Vanilla super language vs. transformation engine In Appendix C.3, an example, formal
description of super language (C.3a) and StegaPhone (C.3b) is provided which do not include the
transformation engine. The example description uses a traditional, generative grammar approach to
language. While such an approach can leverage some of the important properties in the model, it has
several limitations that are addressed by the transformation engine. For example, it does make use of the
tip of the spear property by creating an intermediary super language to avoid having to define the
generative grammar for the original base, oral English. However, even with the addition of the
production rules tasked with converting correct pronunciations and mispronunciations to 0’s and 1’s, the
resulting super language is not an operable system as much as it is just a formal parsing method. It is
missing the packetized form and interpretations included in the transformation engine.

11

Variety in specification components There is a great diversity in the possible bases/variants and
the modifications/transformations that relate them, such as variations across their form, interpretation,
augmentation, or other classifications. The commands and artifacts introduced in the engine can also
differ across these variations. They are often more complex expressions compared to bases and variants
because they carry more of the interpretative, rather than structural, load in a transformation. As types,
they can range from traditional strings, to functions, to more abstract computing objects and other
representations.

Variety in transformation implementations It is not strictly necessary to implement the engine’s
transformations in terms of an ordered set of rewrite rules. For the consistency of the framework, the
system should behave as a rewriting system (roughly deterministic up to non-deterministic factors in the
modification function). However, for some variants (e.g. complex, context-dependent tokenizations and
substitutions) it may be much more convenient to first implement the transformation using different
methods. For instance, there may be cases that are better suited to statistical/ML-based methods, such
as an autoregressive language model fine-tuned to perform substring- and token-wise transformations. It
is then possible to add verification guardrails for these alternate implementations to preserve the
intended rewrite system logic. Moreover, the alternate implementations can themselves be used to build
out the explicit rewrite system implementation of the transformation.

Self-correction Reductively, super languages can have errors. Errors such as a disagreement between
the intention of a variant (captured via its informal description) and a string output by an
implementation of the variant. This can happen when developing complex transformations or when
exploring more black-box implementation alternatives, such as in neural network models.
The self-correcting mechanism of super language is not unlike that in the accretive mixing of linguistic
alterations in the evolution of natural languages. In the iteration of natural language, there is communal
experimentation that changes forms and interpretations. Adoption of the modifications is a social process
in which novel properties are shared and refined. There is a collective error correction and sometimes
so-called errors may actually be explorations of future forms and interpretations.
Super language creation and use should share this self-correcting process because iteration in the tip of
the spear approach to variant transformation can mirror the incremental patchworking in natural
language evolution. Removing an excessive focus on error-free formalizations at the outset is important
to avoid derailing efforts towards new language prototypes.

Example 4: StegaPhone in the engine

StegaPhone example engine specifications

Example implementation of StegaPhone in the transformation engine in Table 3

StegaPhone example engine execution

Example execution of StegaPhone in the transformation engine in Figure 3.

Super Language Typology

The typology of super language can be considered in terms of the variety in transformation from base
and variant. We can initiate a typology first from the Description 2 outline of super language model
components and their key axes of variation including forms (θ), interpretations (ψ), and augmentations

12

Table 3: StegaPhone transformation specification for engine.

Component Variables Example

Base string b ∈ B English (EN-US)
Variant string v ∈ V StegaPhone (StegaPhone-201)
Tokenization τ words (e.g. “swim”)
Rewrite Rules r ∈ R word → mispronounced word (e.g. “swim” → “svim”).
Mod Function µ Encodes {0, 1} as binary bits in {word, mispronounced word} of

Base “cover” string for each index of Mod Commands “payload”
characters.

Mod Commands u ∈ U 1. Set <Payload alphabet>.
2. Set <Chunk size>.
3. Set <Payload string>.

Mod Artifact w ∈W w = (wint, wkey)
Interpretation wint = <Payload alphabet>
Inverse Key wkey = {<Payload alphabet>, <Chunk size>}

Inverse Mod Function µ−1 Decodes and returns the <Payload string> token-wise from Variant
string given {<Payload alphabet>, <Chunk size>} of Inverse Key.

(ϕ). Typology along those axes is elaborated on in Appendix B: Transformation Variation and can be
further expanded in scope. Future work will develop this expansion in terms of super language
representation domains or applications and in terms of the engine modification commands and artifacts
(Description 4 and Appendix C.1). In order to explicitly attribute types or classes, the typology can be
made more precise via transformation classification.

Transformation classification brief In super language, a classifier implements the classification of
an argument for a particular target. The domain of the classifier is designed around its argument (e.g. a
variant) and the codomain is designed around its target (e.g. speed). The arguments include are
modifications, variants, or super language transformation instances. These are the objects classified into
classes or their categories. The targets include are drawn from forms, interpretations, augmentations,
applications, among other categories. Classifiers of super languages can be formalized as a function (often
a set function or a measure) mapping its argument to a target.
In Equation (13), a classifier (Ĉ) implements the classification (C) of an argument (Carg) with respect to
a target (Ctar). Occasionally the classifier will require additional input (Cin) to execute the classification.

C : Ĉ(Carg(Cin)) → Ctar (13)

The classifiers, and in particular the targets of the classification it defines, will vary. In some cases, the
classifier may be a simple test for the existence of a particular form (e.g. does the modification introduce
a new phoneme) or interpretation (e.g. does it introduce parallelization). In other cases, especially for
augmentation or application targets, the classification may be in more continuous units (e.g. change in
“surprisal” augmentation from base to variant).

Transformation classification network Together the classifiers, the arguments, and the targets form
a transformation classification network (Figure 4). Such a network is valuable as a tractable way to chart
and explore of the universe of possible transformations, especially since different classifiers may return
different outputs for the same arguments.

13

Figure 3: Example execution of StegaPhone in the transformation engine. Top-
to-bottom direction is the transformation (Z) and bottom-to-top is the inverse
(Z−1). Variant (v) at � is the output or input string in the transformation or its
inverse, respectively. Encoding or decoding at � is executed by the modification
function (µ), or its inverse (µ−1).

Super Language Review

Contexts to the framework

We consider a selection of important contexts in which the super language framework can be reviewed,
and for which advantages or opportunities in super language can be considered.

Creating new language

A key lens through which to review super languages are other efforts toward new language. Two typical,
but unwieldy, categories of these efforts are natural language and constructed language [7].
Super language can be described as either natural or constructed. It can be partially natural depending
on the choice of base, or entirely natural (e.g. the descriptive verbal super language). In fact, the super
language framework is based on key qualities of natural language evolution (e.g. iterative alterations).
Like constructed language (or conlangs), super languages can include deliberate design. There are some
efforts in the conscious engineering of language, like those of controlled natural language (CNL) [8], that
also focus specifically on changes to a base language.
There are also some computational linguistic tools (e.g. Prolog [9] and FCG Editor [10]) that can support
language design and experimentation.
With an elaboration beyond the scope of this review, these alternatives have different limitations. They
do not have a modular and extensible transformation architecture for the rapid, tip of the spear
augmentation to language. The extremely limited adoption of conlangs conveys the need for new
paradigms in language modification.

14

Figure 4: Modular design and cataloging of super language via engine transfor-
mation specifications and classifications.

Specifying language

Language type

Another key lens through which to review super languages are other attempts at the explicit and implicit
typologizing of language. There are formal efforts in typological linguistics, such as in the context of
construction grammar theories [11]. There are more applied efforts such as in the parametrization of
language features to create and solve Linguistics Olympiad problem sets [12], [13].
Typological studies have further developed with the emergence of machine representations of language
(including language-mediated content) and their intersection with various human ontologies. An
important development in this area is that of “evaluations”, testing linguistic reasoning in language
models [14], [15].
These different efforts can supply components in super language (e.g. possible forms/interpretations) but
they have limitations. They are often backward looking, focusing on the historical cataloging and
recycling of existing features of language rather than serving as a roadmap towards new language. They
can be impractical, focusing on hyper-detailed specifications rather than an intuitive menu of new
features.

Language change

Similar to typological research describing language in terms of their forms and functions, other relevant
efforts seek to describe language in terms of their change over time. There are a variety of approaches
including historical, comparative, evolutionary, diachronic and other change-based investigations of
language.
For example, human language has been a key enabler for culture, intergenerational information transfer,
and the socialization of our species at scale [16]. Dissecting these impacts in various units of change can
support the development of super language, helping characterize the salience that it seeks out in the
search of new transformations.

15

Applying language

The applying of language here refers to its impact as both the subject and object of its use in different
domains.

Neural bases

The neural basis, and inversely the neural consequences, of language are important vectors to consider for
the development of super language.
There is a two-way interaction between the instantiation of language and the neural coding schemes that
produce it. This is true in horizontal sense, in which language, as instrument of synaptic plasticity,
supports a variety of cognitive functions. For instance, learning can be strongly mediated by reading. It
is true in a more vertical sense, in which language is acting more directly on the structures it is subserved
by. For instance, research of the PFC has been shown to be key for the capacity for language for both (i)
an individual, through measurements during their development into early adulthood [17], and (ii) the
species as a whole, through the hyperscaling of the PFC in humans compared to the relative stagnation
in the PFC of its closest relatives [18].
Moreover, evolutionary evidence has suggested sudden phase transitions in a coevolutionary trajectory of
language and the neural systems that underlie it [19]. Study of the acceleration triggers in this history
can inform iteration in super language design.

Universe of applications

Beyond the duality in language and its neural bases, there are many other intersecting domains in which
to consider language as both subject and object. They can be viewed hierarchically, as upstream (e.g.
cognitive) or downstream (e.g. social influence) from where language is viewed as being expressed (e.g.
speech). They can be viewed more functionally, as inner dialog or tools for thought of the individual, as
communicative functions between groups, as distributed ecological/environmental states, as neural
patterns in machine learning models, etc.
Super language design can be informed in terms of its subject-object interplay across the different
domains of application.

Language of technologies

In the universe of applications, one neighborhood which has been significantly explored is the practice of
language in technology. This area has seen the explosion of perhaps nominally constructed languages:
Boolean algebra for digital circuits, Morse code for telegraphy, programming languages for computers,
domain specific languages (e.g. for mathematics, such as Lean or Mathematica), etc. More recently,
neural network technologies have greatly improved machine capabilities in human language. Such a
machine, based on large language models, can now use the vast collection of natural language (primarily
in human expressions stored on the internet) to create representations of meaning and build out a great,
artificial intelligence.
Whether these machines exhibit intelligent, or only intelligent-adjacent, features, they are by design
significantly mediated by expressions in natural language. They are also by design operated by humans
via natural language. Future work will expand on the value of new language in and beyond its role as
interface between human and technology. But in this context it stands to reason that it will be fruitful to
experiment and iterate on what has served as both the generative source and the interface for this
machine intelligence. Super language can provide framework for such iterative exploration.

16

Discussion & Future Work

We have introduced a new framework, super language, and presented an example variant prototype,
StegaPhone, to evolve our methods for language creation and adoption. The framework, including the
underlying model of language, transformation engine approach, and typological map, have been outlined
to encourage attempts at new language. The modular architecture proposed, with rapid iteration across
forms and interpretations, leverages the different strengths in natural language evolution and deliberative
constructed language design to establish a system of a language augmentation. In subsequent work, we
will elaborate on the framework, its context, and share additional prototypes. This proof-of-concept, in
terms of the framework and example prototype, is inspired by the pluripotent mechanisms of language
and aspires towards new heuristics for their future.

17

References

[1] Peter Gordon. Numerical Cognition Without Words: Evidence from Amazonia. Science,
306(5695):496–499, October 2004.

[2] Michael C. Frank, Daniel L. Everett, Evelina Fedorenko, and Edward Gibson. Number as a cognitive
technology: Evidence from Pirahã language and cognition. Cognition, 108(3):819–824, September
2008.

[3] Zachary Ziegler, Yuntian Deng, and Alexander Rush. Neural Linguistic Steganography. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong,
China, 2019. Association for Computational Linguistics.

[4] Adele E Goldberg. Constructions: A new theoretical approach to language. Trends in Cognitive
Sciences, 7(5):219–224, May 2003.

[5] Margarete Imhof. Listening Span Tests. In Debra L. Worthington and Graham D. Bodie, editors,
The Sourcebook of Listening Research, pages 394–401. Wiley, 1 edition, September 2017.

[6] Emil L. Post. Formal Reductions of the General Combinatorial Decision Problem. Journal of
Symbolic Logic, 8(1):50–52, 1943.

[7] Christine Schreyer. Constructed Languages. Annual Review of Anthropology, 50(1):327–344, October
2021.

[8] Tobias Kuhn. A Survey and Classification of Controlled Natural Languages. Computational
Linguistics, 40(1):121–170, March 2014.

[9] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog. Theory and
Practice of Logic Programming, 12(1-2):67–96, 2012.

[10] Remi Van Trijp, Katrien Beuls, and Paul Van Eecke. The FCG Editor: An innovative environment
for engineering computational construction grammars. PLOS ONE, 17(6):e0269708, June 2022.

[11] William Croft. Ten Lectures on Construction Grammar and Typology. BRILL, September 2020.

[12] Bozhidar Bozhanov and Ivan Derzhanski. Rosetta Stone Linguistic Problems. In Ivan Derzhanski
and Dragomir Radev, editors, Proceedings of the Fourth Workshop on Teaching NLP and CL, pages
1–8, Sofia, Bulgaria, August 2013. Association for Computational Linguistics.

[13] Vlad A. Neacs,u. Linguistics Olympiad. Training Guide. Number 13 in Textbooks in Language
Sciences. Language Science Press, Berlin, 2024.

[14] Nathan Chi, Teodor Malchev, Riley Kong, Ryan Chi, Lucas Huang, Ethan Chi, R. McCoy, and
Dragomir Radev. ModeLing: A Novel Dataset for Testing Linguistic Reasoning in Language Models.
In Michael Hahn, Alexey Sorokin, Ritesh Kumar, Andreas Shcherbakov, Yulia Otmakhova, Jinrui
Yang, Oleg Serikov, Priya Rani, Edoardo M. Ponti, Saliha Muradoğlu, Rena Gao, Ryan Cotterell,
and Ekaterina Vylomova, editors, Proceedings of the 6th Workshop on Research in Computational
Linguistic Typology and Multilingual NLP, pages 113–119, St. Julian’s, Malta, March 2024.
Association for Computational Linguistics.

18

[15] Andrew M. Bean, Simi Hellsten, Harry Mayne, Jabez Magomere, Ethan A. Chi, Ryan Chi, Scott A.
Hale, and Hannah Rose Kirk. LINGOLY: A Benchmark of Olympiad-Level Linguistic Reasoning
Puzzles in Low-Resource and Extinct Languages, October 2024.

[16] Mark Pagel. Q&A: What is human language, when did it evolve and why should we care? BMC
Biology, 15(1):64, December 2017.

[17] Kate Teffer and Katerina Semendeferi. Chapter 9 - Human prefrontal cortex: Evolution,
development, and pathology. In Michel A. Hofman and Dean Falk, editors, Progress in Brain
Research, volume 195 of Evolution of the Primate Brain, pages 191–218. Elsevier, January 2012.

[18] J.B. Smaers, J. Steele, C.R. Case, A. Cowper, K. Amunts, and K. Zilles. Primate Prefrontal Cortex
Evolution: Human Brains Are the Extreme of a Lateralized Ape Trend. Brain Behavior and
Evolution, 77(2):67–78, April 2011.

[19] Rafael Vieira Bretas, Yumiko Yamazaki, and Atsushi Iriki. Phase transitions of brain evolution that
produced human language and beyond. Neuroscience Research, 161:1–7, December 2020.

19

Appendix

Appendix A: StegaPhone Demonstration

Additional information on the StegaPhone interactive examples described in Example 1.

Appendix A.1: StegaPhone interactive examples details

There are two interactive examples are at:
https://intro2024.superlang.org

StegaPhone playground

In the StegaPhonetic playground, the vast possibilities in the choice of payload alphabet hints at the
different uses to this super language prototype.
A natural first choice for an alphabet is an ordered list of letters {a, b, c, ...}. This is roughly how the
characters are organized in the American Standard Code for Information Interchange (ASCII) table.
Using the ASCII table alphabet, the word “hi” would be represented as binary string
“0110100001101001”, requiring at least 16 words (and a specific 7 of them mispronounced) to embed the
payload.
But the payload does not itself need to be a string of English words like the cover that carries it. The
payload itself could be much simpler and yet operate in a wholly different system of communication. For
example, consider a “controller alphabet” {Input1, Input2, ..., Inputn} where each character instead
represents a command to an input.
Without loss of generality we can consider an example controller alphabet like {�, ^, �, Start-Stop, Yes,
No, Error}. The arrows specify a directional “movement” command whereas the remaining are
“interaction” commands: Start/Stop to start and stop communication; Yes and No commands for a
generalizable binary user input typically used for “approve” and “reject”, respectively; Error for some
choice of error signaling or correction.

StegaPhonetic news

StegaPhonetic news is a toy demonstration of a fictional, malicious use case for this steganography
technique. It includes a set of fictional, financial news segments for the cover and a set of fictional stock
tips for the payload.
Stock tips are in the form <up/down arrow><company stock ticker symbol>.
For example, ^VZ for the tip “buy shares of Verizon, Inc.” or _BLK for “sell shares of BlackRock, Inc.”
Stock tips are randomly selected for embedding into the cover.
This simple example is a reminder of the dual-use nature of steganography and of language in general.
Ethical considerations are important during the development of steganography techniques and of super
language prototypes in general.

Implementation information

Mispronunciations The mispronunciation of any word is represented by a particular misspelling of
that word. The mispronunciation of that word in an utterance is a phonetic reading of its misspelling.
This is also the case when providing the text for artificial speech synthesis to a text-to-speech model.
There are many words for which the current implementation does not generate a mispronunciation by

20

https://intro2024.superlang.org

way of phonetic misspelling. In those cases, there is a catchall condition that adds the paralanguage “uh”
following any word that must be mispronounced.

Payload alphabet The payload alphabet is any ordered set of characters. A character from the
payload is embedded in the cover using the binary value of its index in alphabet.

Chunk size This reduces the frequency of mispronounced words by increasing the total number of
words required to encode any given payload. A chunk is the set of words associated with one bit in the
payload. At least one of those words must be mispronounced for the bit to take on a value of 1. This
adjustment makes it easier to produce and understand an utterance in StegaPhone. It can also make any
message hidden in StegaPhone speech more resistant to steganalysis. The default chunk size is 1 so that
one word in the cover corresponds to one bit in the payload.

21

Appendix B: Transformation Variation

Transformation variation across forms and interpretations, as well as other classification targets in
augmentations, applications, etc.

Appendix B.1: Forms Tables

Forms: Simple structures

Forms of simple structure provided in Table 4.

Table 4: Simple container structures for transformation forms.

Category Description/example

Symbol The element “�” in an alphabet defined by the set {�,^,�,_, AO, BO}.
Substring The sequence [�,�,_, BO] or “��_BO” in string “��^_AO_BO”.
Character Character “h” in “hello world”.
Word Word “hello” in “hello world”.
Clause “I will swim” in “The forecast is unclear. If it is sunny, I will swim.”
Sentence “The forecast is unclear.” in “The forecast is unclear. If it is sunny, I will swim.”

Forms: Linguistic structures

Forms of linguistic structure provided in Table 5.

Table 5: Linguistic container structures for transformation forms.

Category Description/example

Phonological/
Phonetic

Phonemes, pronunciations, allophones, articulatory gestures and other elements of speech
production/perception. (StegaPhone example has this form structure)

Prosodic Supra segmental elements of speech such as pitch, intonation, stress, rhythm.
Morphological Morphemes. Both content (e.g. lake) and function (-ed suffix in English grammatical

marker for past tense, as in “they jumped into the lake”).
Syntactic Syntactic functions that define the generation and parsing of morpheme sequences, in-

cluding the relationship between constituents and clauses
Pragmatic Different forms of context which affect meaning in language.
Lexical Vocabulary, subsets of lexical corpuses.
Grammatical Broader grammatical category to encompass the variety of grammatical structures used

to define a language. For example, production rules in a formal grammar to recover
part-of-speech tokens.

Semantic Meaning/interpretation of symbols or sequences of symbols.
... ...

Forms: Extralinguistic structures

Forms of extralinguistic structure provided in Table 6.

22

Table 6: Extralinguistic container structures for transformation forms.

Category Description/example

Paralinguistic Nonlexical elements of speech (e.g. filler sounds like “uh”) ...
Proxemic Containers for space and distance ...
Chronemic Orientations and organizations of time ...
Modal Medium meta-category (e.g. body language). Kinesic, Haptic/Tactile, Gustatory, Olfac-

tory, Oculesic, ...
Technological Technology containers such as in cryptographic keys, blockchain operations ...
Sociocultural E.g. belief systems, artistic artifacts ...
Semiotic E.g. evolutionary, ecological, environmental containers, other ecosystem contexts ...
... ...

Forms: Interpretation structures

Forms can themselves be containerized into functional structures. They can be made from any of the
interpretations (including ontological objects) outlined in Appendix B.2: Interpretations Tables. An
example demonstration of this role reversal follows below.

T–V distinction modification Consider a modification M [TV]:
Mod Interpretation: control of social distance by a speaker when addressing an individual.
Mod Form: different second-person pronouns (e.g. French tu vs. vous).

T–V distinction squared modification Consider another modification M [TV 2]:
Mod Interpretation: topic shifting in discourse (e.g. changing of topic like “moving on”).
Mod Form: use of the M [TV] modification.
Note the original M [TV] does not necessarily need to be in a specific container, like pronouns.
The form here has become the control of social distance in the T–V distinction.

Interpretation container example Consider this sequence of example transformations:
English: I would like to help you (informal). Moving on, the next item is ...
English + M [TV]: I would like to help thou. Moving on, the next item is ...
English + M [TV] + M [TV 2]: I would like to help thou. The next item is ...
The last illustrates use of an interpretation structures as a form container.

23

Appendix B.2: Interpretations Tables

Interpretations: Categories

Interpretation categories provided in Table 7.

Table 7: Categories of functional roles for interpretations in super language
transformation.

Category Description text

Argument-
Structure /
Event-Structure

Establishes how events are conceptualized, specifying who does what to whom
(Agent, Patient, Recipient, etc.) and how participants relate to each other in a
clause. By systematically encoding roles, language can represent complex actions
with multiple participants and outcomes.

Tense-Aspect-
Modality (TAM)

Encodes the temporal and modal dimensions of events: when something happens
(tense), whether it is ongoing or completed (aspect), and the speaker’s attitude
toward its likelihood or evidence (modality). This allows language to interweave
time and epistemic stance into event descriptions, broadening discussion from not
just what happens, but when and with what certainty.

Voice &
Perspective

Alters how events are framed by shifting emphasis among participants (active,
passive, reflexive, middle, etc.). This allows language to reshape perspective,
highlighting or downplaying different participants and influencing how
responsibility, agency, or viewpoint is perceived.

Information-
Structure

Manages how new vs. given info is packaged, which elements are in focus or
backgrounded, and how topics are introduced, maintained or shifted. By
structuring the flow of information, language can guide attention, emphasize
contrasts, and maintain coherence in discourse.

Illocutionary
Force /
Speech-Act

Encodes the speaker’s communicative intent—whether making a statement, asking
a question, giving a command, or expressing emotion. This transforms language
into an interactive tool for performing actions (telling, requesting, commanding)
rather than just describing.

Discourse-
Structuring

Organizes communication at a level beyond single clauses, marking transitions,
topic shifts, and parentheticals. This ensures extended discourse or conversation
remains coherent and navigable with participants guiding the flow of conversation
across multiple sentences or turns and shaping how ideas connect at a higher level
than single clauses.

Pragmatic /
Social-Indexical

Conveys social relationships, stance, politeness, identity markers, and contextual
nuances of interaction. Enhances language beyond raw propositional content as a
social tool, signaling formality, hierarchy, in-group vs. out-group status, or
personal attitudes.

Idiomatic /
Figurative

Conveys non-literal or partially compositional expressions (e.g. idioms, metaphors,
set phrases). Enhancing language as a cultural, memetic tool with culturally rich,
creative, and often evocative dimensions that expand expressive power beyond
direct description, enabling speakers to convey nuanced or imaginative meaning.

Continued on next page

24

Table 7 – Continued from previous page

Category Description text

Conceptual /
Ontological

Introduces genuinely new concepts, entities, or ontological objects into the
language, or significantly reorganizes conceptual boundaries. By adding or
redefining what can be expressed (e.g. new scientific phenomena, cultural practices,
or abstract concepts), language extends its semantic horizon and speakers can refer
to and think about something previously unnamed or only vaguely conceptualized.

Information
Encoding &
Channels

Adds or modifies the methods by which information is symbolically
represented—new alphabets, parallelization, additional semantic layers. It does not
necessarily introduce new concepts, but transforms how existing concepts are
delivered, such as increasing expressive capacity, security, or throughput in
communication.

... ...

Interpretations: Examples

Interpretation examples provided in Table 8.

Table 8: Example functional roles for interpretations in super language trans-
formation.

Category Example Example description Example text

Argument-
Structure /
Event-Structure

Ditransitive Conveys an Agent, an Indirect
Object/Recipient, and a Direct
Object/Theme in one event.

He baked her a cake.

Caused-
Motion

Emphasizes an Agent causing a
Theme to move along a path.

She kicked the ball into the goal.

Resultative Presents an Agent causing an
object to reach a new state.

He hammered the metal flat.

Tense-Aspect-
Modality (TAM)

Past Tense Places the action in a completed
timeframe.

I walked home.

Progressive Emphasizes that the action is
ongoing.

I am walking home.

Modality Conveys possibility, necessity, or
uncertainty.

She might arrive soon.

Voice &
Perspective

Passive Centers the patient/theme while
demoting the agent.

The cake was eaten (by John).

Middle Frames the subject as
undergoing the action without a
specified agent.

This car drives smoothly.

Reflexive Emphasizes that the agent and
patient are the same entity.

They criticized themselves.

Information-
Structure

Cleft Spotlighting or isolating a key
participant or piece of
information.

It was Sarah who fixed the sink.

Continued on next page

25

Table 8 – Continued from previous page

Category Example Example description Example text

Topic-Marking Clearly labels the topic or
theme of the sentence.

Japanase: Gakkou wa atarashii
desu. (English translation: The
school is new.)

Illocutionary
Force /
Speech-Act

Imperative Converts an utterance into a
direct command.

Close the door!

Yes/No
Question

Requests confirmation or denial
from the listener.

Are you leaving now?

Exclamative Expresses strong emotion or
heightened emphasis.

What a gorgeous day!

Discourse-
Structuring

Discourse
Marker

Signals a shift or elaboration in
discourse.

Well, let us consider another
point...

Topic Shift Announces a change in the
subject matter or focus of
discussion.

Moving on to our next agenda
item...

Parenthetical Inserts side remarks or
comments without derailing the
main clause.

He is—if you can believe
it—already at the finish line.

Pragmatic /
Social-Indexical

T/V
Distinctions

Marks social distance or
familiarity via separate
second-person pronouns.

French tu vs. vous

Stance
Markers

Inserts the speaker’s attitude,
confidence, or emotion into the
utterance.

Frankly, I think we should
cancel the event.

Idiomatic /
Figurative

Metaphor Maps one conceptual domain
onto another to create layered
understanding.

Time is money.

Idioms Fixed, culturally entrenched
phrases with meanings not
always derivable from
components.

kick the bucket, spill the beans

Extended
Figurative

Uses elaborate imagery to
convey emotion or attitude.

He was skating on thin ice with
that comment.

Conceptual /
Ontological

Coining
Neologisms

Creates a word for a previously
unknown/unnamed
phenomenon.

quark, quasar, meme

Conceptual
(Re)Framing

Alters how a domain is
understood (e.g. cyclical time)
without coining new words.

“Time is a circle” (requiring
change in temporal framing)

Category
Merging

Combines or splits existing
categories (e.g. color terms) to
reflect new conceptual
boundaries.

Merging “blue” and “green”
into one color category

Continued on next page

26

Table 8 – Continued from previous page

Category Example Example description Example text

Information
Encoding &
Channels

Parallelization
(StegaPhone
example)

New channel for sequence (often
binary bits) in the token
containers of the associated
form.

StegaPhone “swim” vs. “svim”
for binary 0 vs. 1

Semantic Rep-
resentation

Changes of semiotic signs and
symbols carrying meaning.

Make letters, not words, the
smallest unit of meaning that
can stand on its own.

Color-Coded
Grammar

Uses color to indicate
grammatical categories (e.g.
tense or case), clarifying or
speeding comprehension. Details
of color coding scheme in
associated form.

Red text for verbs, blue text for
nouns, etc.

Morphological
Fusion

Merges multiple grammatical
markers (e.g. tense + aspect +
evidential) into a single affix for
high information density.

One suffix for past + perfect +
reported: -pecrep

.

27

Appendix B.3: Augmentations Tables

Augmentations: Categories & Examples

Augmentation categories and examples provided in Table 9.

Table 9: Sketch of categories and examples for augmentations in super language
transformation.

Category Category description Example Example description

Speed +∆ forms/interps per unit time
(i.e. increase in information rate).

... ...

Quantity +∆ number of forms/interps
(ignores distance from existing
forms/interps).

... ...

Capacity +∆ number of forms/interps
(considers distance from existing
forms/interps).
Often measuring expressive potential in
sender/receiver messages.

... ...

Surprisal +∆ information load per unit (e.g.
symbol/token) so more meaning
compressed per unit.

Words-to-
Alphabet

Words � unique symbol in
new orthography
(e.g. apple � symbol1,
pear � symbol2, ...)

Density
Dimensionality +∆ number of channels modes of

expression.
+∆ degrees of freedom per unit
expression or communication.

Multimodal
Layering

Modal encodings with new
semantic cues.

StegaPhone Embed binary (1)0 in
(mis)pronunciation of
words.

Accuracy
Precision
Privacy
Security +∆ resistance against adversarial

interception of messages.
−∆ message decipherability per unit
communication.

Crypto
Grammar

Cryptographic primitives
(e.g. hash function) in
morphological or syntactic
containers.

Dialog
Checksum

Linguistic adaptation to
longitudinal parity check.

Parsimony
Robustness
Intelligence
Loading

+∆ in [Capacity] augmentation per unit
modification (e.g. g-factor correlation
with tests of users learning new
forms/interps in variant).

... ...

Learning
...

28

Appendix C: Transformation Engine Information

Additional information for the transformation engine described in Description 3 and Description 4.
For clarity, modifications are absorbed in one modification (M).

Appendix C.1: Transformation Specification Components

Base (B) Base B or string instances b ∈ B are comprised of symbols from the base alphabet ΣB.

Variant (V) Variant V or string instances v ∈ V are comprised of symbols from the variant alphabet
ΣV . In a transformation, variants are comprised of interwoven sequences of substrings from the base and
token replacements from applied substitutions. Variants manifest the form in a transformation and
thereby serve as a target of control via modification commands.

Modification (M) Modification M(τ,R, µ) includes the tokenization (τ) over a base (B) and variant
(V), rewrite system including ordered set of rewrite rules (R), the modification function (µ).
Application of one or more modifications over a base defines a variant. A modification may be one or
more modifications. The inverse of the modification (M−1) must include the definition for the inverse
modification function (µ−1).

Tokenization (τ) The tokenization is a function over strings of the base, or variant, that will return
the targets for the rewrite rules (R) patterns, or replacements. There are a variety of tokenizations
available including: words, sentences, (word, part-of-speech), and many more (Appendix B:
Transformation Variation).

Tokens (T) The resulting base/variant tokens are the patterns/replacements of the rewrite rules.
Token alphabet (ΣB) will supplement the base and variant alphabets to execute the parsing and
tokenizing.

Rewrite Rules (R) The rewrite rules are ordered set of pairs of patterns (α) and replacements (β) for
substitutions (α→ β) over a string. Substitutions are possible at tokens matching patterns/replacements.
Each rewrite rule rj in R is given by: rj = (αj , βj , µ) where αj is the “pattern”, βj is the “replacement”,
and µ is the modification function. The rewrite rules (R) form a Rewrite System (RS).

Rewrite System (RS) The rewrite system is the ordered set of rewrite rules (R) where modification
function (µ) is the degenerate default. It can produce all possible values a variant string can take on
following super language transformation (and similarly all possible values a base string can take on
following inverse transformation). Following tokenization, RS can generate all possible v ∈ V for b ∈ B,
and vice versa. This is an important property. As a result, it is possible to enumerate the set of all
possible forms a transformation can create independently of the set of all possible interpretations.

Modification Function (µ) The rewrite system makes it possible (i) to manifest the forms in super
language transformation. Modification function (µ) extends this implementation so that is also possible to
(ii) control the forms, as well as to (iii) manifest and (iv) control the interpretations of a transformation.
The modification function will implement the modification or modifications of a transformation.

29

Inverse Modification Function (µ−1) The inverse modification function is the inverse of the
modification function. It may need to be further specified when there are additional requirements on the
inversion (e.g. must be bijective, injective, or surjective).

Modification Commands (U) Modification commands (U) are inputs to the modification function
(µ) and will vary. They specify operation over the base string to generate a target variant string, a target
artifact, or both. They enable the control of both form and interpretation in the transformation.
Without loss of generality, let the commands be a symbolic sequence drawn from another alphabet, the
commands alphabet (ΣU).

Modification Artifact (W) Modification artifact (W) is output to the modification function (µ) and
will vary. They manifest the interpretation in a transformation and thereby serve as a target of control
via modification commands. Without loss of generality, let the artifacts be a symbolic sequence drawn
from another alphabet, the artifact alphabet (ΣW). The artifact is composed of two subcomponents, the
interpretation (Wint) and the inverse key (Wkey).

Modification Artifact Interpretation (Wint) The interpretation is the functional role of the
transformation. It can vary greatly with very minor adjustments to this role (see Example 3 for an
illustration).

Modification Artifact Inverse Key (Wkey) The inverse key is the minimum data necessary to
execute the inverse transformation. At most, the key will include the sequences of all modifications
applied in a transformation. Often, for a given variant, there are more computationally efficient
implementations of the inverse transformations. For example in StegaPhone, the base string is the correct
pronunciation all words in the variant. The commands, in this case the payload, are retrieved from
word-wise decoding of the binary data stream. Neither of these require a decompiling of the rewrite
sequences.

30

Appendix C.2: Transformation Engine Algorithm

Table 10 outlines the steps of the transformation engine, enabling generation of super language
transformations and their inverse via transformation specification recipes. Example 4 provides a
transformation specification outline for the StegaPhone example variant.

Table 10: Transformation engine steps mapping base and commands to variant
and artifact, and vice versa.

Steps Description

Step 0 Receive transformation specification (Z, Z−1) and begin engine execution.
↪→ Start Sender mode and go to Step 1.
↪→ Start Receiver mode and go to Step 6.

Step 1 Receive base string (b ∈ B) input.
Step 2 Execute tokenization (τ) over base string to create tokens (T).
Step 2a (optional) Execute the rewrite system (RS) over base string.
Step 3 Receive modification commands (u ∈ U), if any.

May require function FU to map variety of inputs to direct output in V and W .
Step 4 Execute the transformation.
Step 4a Call initialization mod function (µ0) to begin rewriting, iterating (ℓ) through each substring (sn)

and token match (tk).
Mod function call at each iteration is µ(xℓ|ℓ) = µ(xℓ) = µℓ where ℓ is either a token match k or
non-token substring n.
Mod function has iterative input xℓ = µ′(xℓ−1) and output µ(xℓ) = (δℓ, wℓ, µ

′
ℓ).

The δℓ, wℓ, µ
′
ℓ are the values of rewrite rule substitution, modification artifact (wℓ = (wint, wkey)ℓ),

and modification function state, respectively, at iteration ℓ.
Step 4b If ℓ is n, call mod function µn with δn output always 0.
Step 4c If ℓ is k, call mod function µk (i.e. µji).

rk(αj , βj , µji) is iteration having rewrite rule rk with token i matching pattern αj
To determine whether to apply substitution (α→ β), evaluate δk in µk.

δk =

1, apply substitution

0, skip

-1, apply & skip (degenerate transformation)

Step 4d Following last iteration, execute terminating call (µN).
Step 5 Return variant (v), artifact (w), Z having determined which v, w ∈ V,W for source b, u ∈ B,U .

↪→ End Sender mode and exit.
Step 6 Execute inverse transformation procedure (Z−1)

Unless otherwise implemented (very likely), artifact inverse key (wkey) has recorded transforma-
tion steps as a rewrite sequence (in each µ′ℓ). This key can be used to decompile the transforma-
tion in reverse to retrieve source base string and commands for given variant string and artifact.

Step 6a Return base (b), commands (u), Z−1 having determined which b, u ∈ B,U for source v, w ∈ V,W .
↪→ End Receiver mode and exit.

31

Appendix C.3: Engineless Super Language

Appendix C.3a: Super language in generative grammar representation

The super language framework and prototypes can be expressed in the abstractions of generative
grammar theories.

Let base language L be any language over an alphabet Σ. Let G be a grammar of this base L. Grammar
G = (N,Σ, P, S) where N : Finite set of non-terminal symbols, Σ: Finite set of terminal symbols
(alphabet), P : Finite set of production rules, S ∈ N : Start symbol.

Super language is a function that maps languages to languages, Z : L → L where L is the set of all
languages. A super language Z is a transformation of language L to a new language Z(L). For any
particular transformation Z from L to Z(L) there may be more than way to define it.

The modifications on the language can be defined in terms of the operator Ẑ, Ẑ : G → G where G is the
set of all grammars. More precisely, the Z is Zθ and the Ẑ is Ẑθ since this example in the generative
grammar domain concerns the transformation form, not the interpretation. For clarity, here Zθ and Ẑθ

are written as Z and Ẑ. Applied to a grammar G, it produces a modified grammar, GẐ = Ẑ(G) which
becomes the grammar of the super language Z(L).
In summary:

Z(L) = L(GẐ) = L(Ẑ(G))

Ẑ can be defined as a tuple of functions acting on the components of G:

Ẑ = (fN , fΣ, fP , fS)

where:
fN : N → NẐ , modifying the set of non-terminals.
fΣ : Σ → ΣẐ , modifying the set of terminals.
fP : P → PẐ , modifying the set of production rules.
fS : S → SẐ , modifying the start symbol.

In this case, there is a simplified definition of Ẑ using set operations.
The components of the tuple are the set operation applied to the corresponding component of the
grammar tuple.

Ẑ = (∆N,∆Σ,∆P, δS)

Excluding the starting symbol, the components of the grammar operator can be described in terms of the
set additions and deletions.

Ẑ = ((∆N+,∆N−), (∆Σ+,∆Σ−), (∆P+,∆P−), δS)

Non-terminals modification ∆N = (∆N+,∆N−), where ∆N+ ⊆ Nnew, non-terminals to be added;
∆N− ⊆ N , non-terminals to be removed.

Terminals modification ∆Σ = (∆Σ+,∆Σ−), where ∆Σ+ ⊆ Σnew, terminals to be added; ∆Σ− ⊆ Σ,
terminals to be removed.

Production Rules modification ∆P = (∆P+,∆P−), where ∆P+ ⊆ Pnew, production rules to be added;
∆P− ⊆ P , production rules to be removed.

32

Start Symbol modification δS =

{
S′ if the start symbol is modified, where S′ ∈ N ∪∆N+

S if the start symbol is not modified

The modified grammar GẐ is generated from simple set operations.

Non-terminals: NẐ = (N ∪∆N+) \∆N−

Terminals: ΣẐ = (Σ ∪∆Σ+) \∆Σ−

Production Rules: PẐ = (P ∪∆P+) \∆P−

Start Symbol: SẐ = δS

A super language Z0 can be the base of a new super language Z, such as in a nested super language,
Z(Z0(L)) = L((GẐ0

)Ẑ). A super language can be characterized by one or more sets of operator sequences

{Ẑ1, Ẑ2, . . . , Ẑn}.

Appendix C.3b: StegaPhone in generative grammar representation

Suppose base L (or Len) is the English oral language, in particular the set of all correctly pronounced
English sentences. Defining formally the generative grammar G (or Gen) that generates all of oral English
is challenging. By extension, doing so for all of StegaPhone (Gsp for Zsp) would be more challenging still.

To address these challenges, we can instead create an intermediary super language Z0 that will
overgenerate valid strings in L (Z0 ⊃ Len) to create a simplified G0.

Ẑ0 : Gen → GẐ0

G0 = GẐ0
= (N0,Σ0, P0, S0)

The components of the intermediary super language grammar G0 are:
Non-terminals N0 = {Sentence,WordSequence,Word}.
Terminals Σ0 = {w | w is an English word}, i.e. all correctly pronounced English words in Σen of base.
Production rules P0 = Pparser ∪ {S → Sentence} where Pparser has the following rules:

1. Sentence → WordSequence
2. WordSequence → WordSequence Word
3. WordSequence → Word
4. Word → w, ∀w ∈ Σ0.

Start symbol S0 = Sentence
This approach will avoid the need to explicitly describe all details of base grammar Gen. In general, this
simplification is critical for less encumbered exploration of new language prototypes.

We start with the operator expression:

Ẑ = ((∆N+,∆N−), (∆Σ+,∆Σ−), (∆P+,∆P−), δS)

We define a simple operator Ẑ0 to apply to G:

Ẑ0 = (({WordSequence,Word}, Nen \ {S, Sentence}), (∅, ∅), (Pparser, Pen \ {S → Sentence}), ∅)
Applying Ẑ0 to Gen creates intermediary super language Z0. The resulting grammar G0 parses valid oral
English sentence of Len into its component words. Z0 is now more amenable for the StegaPhone super
language transformation Zsp.

Ẑsp = ((∅, ∅), (Σ′, ∅), ({Word → w′, ∀w′ ∈ ∆Σ+}, ∅), ∅)

33

where the terminal additions ∆Σ+ is Σ′, the set of all mispronounced English words. For each w ∈ ΣẐ0
,

add an incorrectly pronounced version w′, ∆Σ+ = Σ′ where Σ′ : {w′ | w ∈ ΣẐ0
}.

We can chain the super language transformations together, Ẑ = Ẑsp(Ẑ0) and in terms of its generative
grammar, GẐsp

= Ẑsp(GẐ0
) = Ẑsp(Ẑ0(Nen,Σen, Pen, Sen)).

Applying this chain produce the components of Gsp stated in Example 2.
The super language includes all sentences where each word can be either correctly pronounced (w ∈ Σ) or
incorrectly pronounced (w′ ∈ ∆Σ′).

For the interpretation, the binary scheme has correct pronunciation (w ∈ Σ) encode 0 and incorrect
pronunciation (w′ ∈ ∆Σ′) encode 1.

Example transformation Choose sentence s ∈ Len to create Z(s).
sen = “hello world”
Z0(sen) = “hello world”

Zsp(Z0(s)) =

“hello world”, binary payload “00”

“hello vorld”, binary payload “01”

“ello world”, binary payload “10”

“ello vorld”, binary payload “11”

Super language Zsp(Z0(Len)) extends oral English with a new grammar for stegaphonetic communication.

34

	Introduction
	Super Language Framework
	Description 1: Model gist
	Example 1: StegaPhone prototype
	Interactive examples

	Description 2: Model starter kit
	Super language definitions
	Super language transformation
	Super language classification
	Important properties

	Example 2: StegaPhone in the model
	StegaPhone transformation components
	StegaPhone formalization example
	StegaPhone classification
	Exploration & exploitation in the framework

	Super Language Engine
	Description 3: Engine primer
	Transformation engine motivation
	Transformation engine brief
	Important properties

	Example 3: StegaPhone engine sketch
	Description 4: Engine formal outlines
	Transformation engine definition
	Important properties

	Example 4: StegaPhone in the engine
	StegaPhone example engine specifications
	StegaPhone example engine execution

	Super Language Typology
	Super Language Review
	Contexts to the framework
	Creating new language
	Specifying language
	Language type
	Language change

	Applying language
	Neural bases
	Universe of applications
	Language of technologies

	Discussion & Future Work
	References
	Appendix
	Appendix A: StegaPhone Demonstration
	Appendix A.1: StegaPhone interactive examples details
	StegaPhone playground
	StegaPhonetic news
	Implementation information

	Appendix B: Transformation Variation
	Appendix B.1: Forms Tables
	Forms: Simple structures
	Forms: Linguistic structures
	Forms: Extralinguistic structures
	Forms: Interpretation structures

	Appendix B.2: Interpretations Tables
	Interpretations: Categories
	Interpretations: Examples

	Appendix B.3: Augmentations Tables
	Augmentations: Categories & Examples

	Appendix C: Transformation Engine Information
	Appendix C.1: Transformation Specification Components
	Appendix C.2: Transformation Engine Algorithm
	Appendix C.3: Engineless Super Language
	Appendix C.3a: Super language in generative grammar representation
	Appendix C.3b: StegaPhone in generative grammar representation

